Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 trans-Cyclohex-2-ene-1,4-diyl bis(4nitrophenyl) dicarbonate

Syed Nawazish Ali, ${ }^{\text {a,b }}$ Sabira Begum, ${ }^{\text {a }}$ Mitchell A. Winnik ${ }^{\text {b }}$ and Alan J. Lough ${ }^{\text {b* }}$

${ }^{\mathrm{a}} \mathrm{H}$. E. J. Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi 75270, Pakistan, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
Correspondence e-mail: alough@chem.utoronto.ca
Received 3 December 2007; accepted 6 December 2007
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; disorder in main residue; R factor $=0.055 ; w R$ factor $=0.167$; data-to-parameter ratio $=12.0$.

Although the title molecule, $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{10}$, does not possess molecular inversion symmetry, it lies on a crystallographic inversion centre which imposes disorder on the central cyclohexene ring. In addition, the cyclohexene ring has non-symmetry-related disorder over two sites, with the ratio of the major and minor components being 0.54:0.46. The overall effect is to produce four disorder components for the atoms of the cyclohexene ring. The side chain is perfectly ordered and the dihedral angle between the atoms of the carbonate group $\left(\mathrm{O}=\mathrm{CO}_{2}-\right)$ and the benzene ring is $72.99(6)^{\circ}$.

Related literature

For related literature, see: Ali et al. (2008); Ericsson \& Hult (1991); Fréchet et al. $(1986,1987)$.

Experimental

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{10}$
$M_{r}=444.35$
Monoclinic, $P 2_{1} / n$
$a=5.6874$ (4) A

$$
\begin{aligned}
& b=13.4958(10) \AA \\
& c=12.7017(5) \AA \\
& \beta=96.453(4)^{\circ} \\
& V=968.76(11) \AA^{3} \\
& Z=2
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\min }=0.560, T_{\max }=0.987$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.167$
$S=1.05$
2222 reflections
185 parameters

Mo $K \alpha$ radiation
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=150$ (1) K
$0.40 \times 0.18 \times 0.12 \mathrm{~mm}$

9286 measured reflections
2222 independent reflections
1408 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.068$

58 restraints
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{\AA^{-3}}$

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2001); molecular graphics: PLATON (Spek, 2003) ; software used to prepare material for publication: SHELXTL/PC.

The authors acknowledge funding from the Higher Education Commission (HEC) of Pakistan, Materials and Manufacturing Ontario (MMO), Canada, NSERC Canada and the University of Toronto.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2674).

References

Ali, S. N., Ghafouri, S., Yin, Z., Froimowicz, P., Begum, S. \& Winnik, M. A. (2008). In preparation.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Ericsson, J. \& Hult, A. (1991). Makromol. Chem. 192, 1609-1619.
Fréchet, J. M. J., Bouchard, F., Eichler, E., Houlihan, F. M., Ilzawa, T., Kryczka, B. \& Willson, C. G. (1987). Polym. J. 19, 31-49.

Fréchet, J. M. J., Bouchard, F., Houlihan, F. M., Eichler, E., Ktyczka, B. \& Willson, C. G. (1986). Macromol. Chem. Rapid Commun. 7, 121-126.
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

trans-Cyclohex-2-ene-1,4-diyl bis(4-nitrophenyl) dicarbonate

S. Nawazish Ali, S. Begum, M. A. Winnik and A. J. Lough

Comment

The title compound, (I), was synthesized two decades ago (Fréchet et al., 1986) as a mixture of cis and trans isomers starting with a cis and trans mixture of cyclohex-2-ene-1,4-diol to obtain electrophilic character of diols. This compound has been used to obtain a wide variety of thermally and acid labile polymers for a variety of applications (Fréchet et al., 1987; Ericsson \& Hult, 1991). We have used the trans isomer of this alcohol for the synthesis of a number of homo and copolycarbonates (Ali et al., 2008).

We report here the crystal structure of (I). Figures 1 and 2 show the two non-symmetry related components of disorder for the cyclohexene ring in (I). The crystallograhic inversion related disorder is not shown.

Experimental

A solution of 4-nitrophenylchloroformate $(1.41 \mathrm{~g}, 7.0 \mathrm{mmol})$ in dry dichloromethane $(20 \mathrm{ml})$ was added dropwise via a 100 ml separating funnel into a solution of cyclohex-2-ene-1,4-diol (trans isomer) ($0.40 \mathrm{~g}, 3.5 \mathrm{mmol}$) in anhydrous pyridine $(0.49 \mathrm{~g}, 0.5 \mathrm{ml}, 6.2 \mathrm{mmol})$ and dry dichloromethane $(10 \mathrm{ml})$ in a 100 ml round-bottom flask. A white suspension appeared which was allowed to stir gently at room temperature for 12 h . After this time more dry dichloromethane (25 ml) was added, which dissolved the suspension and then the reaction mixture was stirred for another 6 h . Then it was quenched by adding deionized water (30 ml). The reaction mixture was transferred to a separating funnel (250 ml), and the lower organic phase was removed. The aqueous phase was washed with dichloromethane ($20 \mathrm{ml} \times 2$), and all the dichloromethane solutions were combined. These were then washed with deionized water ($20 \mathrm{ml} \times 2$), a 1.0% solution of acetic acid ($30 \mathrm{ml} \times 2$) and once more with deionized water ($25 \mathrm{ml} \times 2$), and then dried over anhydrous magnesium sulfate and filtered. After filtration, the solvent was removed by rotary evaporation. The product was dried in air overnight in a fume hood and then in a vacuum oven for 24 h at room temperature (<1 Torr). The desired product was obtained in good yield ($1.35 \mathrm{~g}, 86.5 \%$) as a white crystalline solid. The product was recrystallized in dichloromethane and colourless needles of (I) were obtained by slow evaporation of solvent at room temperature. In addition to the X-ray structure determination, the structure of the crystalline sample was confirmed by Mass and NMR $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ Spectroscopy.

Refinement

All the hydrogen atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ and refined as riding with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The components of the two symmetry independent disorder sites refined to 0.2680 (13) and 0.2320 (13). The disorder was modelled by creating two full rings for each component and by using suitable constraints and restraints to give each ring component similar geometries.

supplementary materials

Figures

Fig. 1. The molecular structure of (I) showing one component of disorder in the cyclohexene ring. Displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related by the symmetry operator $(1-x, 1-y, 1-z)$.

trans-Cyclohex-2-ene-1,4-diyl bis(4-nitrophenyl) dicarbonate

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{10}$
$M_{r}=444.35$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=5.6874$ (4) \AA
$b=13.4958$ (10) \AA
$c=12.7017(5) \AA$
$\beta=96.453$ (4) ${ }^{\circ}$
$V=968.76$ (11) \AA^{3}
$Z=2$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 9 pixels mm^{-1}
$T=150(2) \mathrm{K}$
φ scans and ω scans with κ offsets
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.560, T_{\text {max }}=0.987$
9286 measured reflections
$F_{000}=460$
$D_{\mathrm{x}}=1.523 \mathrm{Mg} \mathrm{m}^{-3}$
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 9286 reflections
$\theta=3-27.5^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=150$ (1) K
Needle, colourless
$0.40 \times 0.18 \times 0.12 \mathrm{~mm}$
$0 \times 0.18 \times 0.12 \mathrm{~m}$

> 2222 independent reflections
> 1408 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.068$
> $\theta_{\max }=27.5^{\circ}$
> $\theta_{\min }=3.0^{\circ}$
> $h=-7 \rightarrow 7$
> $k=-17 \rightarrow 17$
> $l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.167$
$S=1.05$
2222 reflections
185 parameters
58 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0883 P)^{2}+0.1379 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.35$ e \AA^{-3}
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
N1	$0.1105(3)$	$0.66892(13)$	$1.23307(12)$	$0.0413(4)$	
O1	$0.2311(3)$	$0.72664(14)$	$1.28816(11)$	$0.0724(5)$	
O2	$-0.0346(3)$	$0.61480(13)$	$1.26762(11)$	$0.0677(5)$	
C1	$0.1364(3)$	$0.66467(13)$	$1.12001(13)$	$0.0337(4)$	
C2	$-0.0422(3)$	$0.62192(14)$	$1.05264(14)$	$0.0382(4)$	
H2	-0.1786	0.5955	1.0793	0.046^{*}	
C3	$-0.0189(4)$	$0.61836(14)$	$0.94586(14)$	$0.0422(5)$	
H3	-0.1399	0.5899	0.8976	0.051^{*}	
C4	$0.1818(4)$	$0.65644(15)$	$0.91015(14)$	$0.0431(5)$	
C5	$0.3600(3)$	$0.69951(16)$	$0.97755(15)$	$0.0455(5)$	
H5	0.4966	0.7254	0.9506	0.055^{*}	
C6	$0.3380(3)$	$0.70468(15)$	$1.08455(14)$	$0.0406(5)$	
H6	0.4573	0.7347	1.1325	0.049^{*}	
O3	$0.1941(3)$	$0.65488(13)$	$0.80041(10)$	$0.0582(4)$	
C7	$0.3396(3)$	$0.58846(15)$	$0.76418(14)$	$0.0394(5)$	
O4	$0.4698(2)$	$0.53485(11)$	$0.81690(10)$	$0.0491(4)$	
O5	$0.3066(3)$	$0.59665(13)$	$0.65942(10)$	$0.0551(4)$	

C8A	$0.4218(17)$	$0.5118(9)$	$0.6065(8)$	$0.0423(9)$	$0.2680(13)$
H8A	0.4651	0.4583	0.6597	0.051^{*}	$0.2680(13)$
C9A	$0.6450(17)$	$0.5568(7)$	$0.5726(7)$	$0.0341(18)$	$0.2680(13)$
H9A	0.7567	0.5721	0.6360	0.041^{*}	$0.2680(13)$
H9B	0.6059	0.6195	0.5341	0.041^{*}	$0.2680(13)$
C10A	$0.7618(16)$	$0.4853(7)$	$0.5010(6)$	$0.0509(19)$	$0.2680(13)$
H10A	0.9225	0.5081	0.4897	0.061^{*}	$0.2680(13)$
H10B	0.7721	0.4177	0.5314	0.061^{*}	$0.2680(13)$
C11A	$0.5965(18)$	$0.4882(9)$	$0.3987(9)$	$0.0423(9)$	$0.2680(13)$
H11A	0.6139	0.5519	0.3603	0.051^{*}	$0.2680(13)$
C12A	$0.3392(18)$	$0.4672(7)$	$0.4093(7)$	$0.037(2)$	$0.2680(13)$
H12A	0.2298	0.4543	0.3487	0.045^{*}	$0.2680(13)$
C13A	$0.2677(17)$	$0.4674(6)$	$0.5102(5)$	$0.0435(17)$	$0.2680(13)$
H13A	0.1188	0.4392	0.5203	0.052^{*}	$0.2680(13)$
C8B	$0.496(2)$	$0.5532(8)$	$0.6018(9)$	$0.0423(9)$	$0.2320(13)$
H8B	0.6551	0.5605	0.6438	0.051^{*}	$0.2320(13)$
C9B	$0.4298(19)$	$0.4460(8)$	$0.5879(8)$	$0.0341(18)$	$0.2320(13)$
H9C	0.2613	0.4410	0.5587	0.041^{*}	$0.2320(13)$
H9D	0.4489	0.4127	0.6578	0.041^{*}	$0.2320(13)$
C10B	$0.5814(19)$	$0.3938(10)$	$0.5141(8)$	$0.0509(19)$	$0.2320(13)$
H10C	0.5527	0.3214	0.5139	0.061^{*}	$0.2320(13)$
H10D	0.7515	0.4062	0.5359	0.061^{*}	$0.2320(13)$
C11B	$0.506(2)$	$0.4379(8)$	$0.4055(9)$	$0.0423(9)$	$0.2320(13)$
H11B	0.3474	0.4124	0.3759	0.051^{*}	$0.2320(13)$
C12B	$0.5147(19)$	$0.5479(9)$	$0.3997(9)$	$0.037(2)$	$0.2320(13)$
H12B	0.5330	0.5814	0.3353	0.045^{*}	$0.2320(13)$
C13B	$0.4943(19)$	$0.5999(9)$	$0.4934(7)$	$0.0435(17)$	$0.2320(13)$
H13B	0.4777	0.6698	0.4887	0.052^{*}	$0.2320(13)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0430(9)$	$0.0476(10)$	$0.0351(8)$	$-0.0026(8)$	$0.0119(7)$	$-0.0027(7)$
O1	$0.0743(11)$	$0.1030(14)$	$0.0427(8)$	$-0.0408(10)$	$0.0191(7)$	$-0.0301(8)$
O2	$0.0728(11)$	$0.0881(13)$	$0.0447(9)$	$-0.0339(10)$	$0.0181(7)$	$0.0035(8)$
C1	$0.0384(10)$	$0.0327(9)$	$0.0311(9)$	$0.0052(8)$	$0.0090(7)$	$-0.0006(7)$
C2	$0.0388(10)$	$0.0342(10)$	$0.0420(10)$	$0.0021(8)$	$0.0060(8)$	$0.0018(8)$
C3	$0.0487(11)$	$0.0407(11)$	$0.0357(10)$	$0.0075(9)$	$-0.0021(8)$	$-0.0036(8)$
C4	$0.0485(11)$	$0.0510(12)$	$0.0305(9)$	$0.0232(9)$	$0.0071(8)$	$0.0028(8)$
C5	$0.0383(11)$	$0.0579(13)$	$0.0431(10)$	$0.0087(9)$	$0.0164(8)$	$0.0066(9)$
C6	$0.0382(10)$	$0.0470(11)$	$0.0375(10)$	$0.0010(8)$	$0.0080(7)$	$-0.0016(8)$
O3	$0.0684(10)$	$0.0769(11)$	$0.0302(7)$	$0.0395(8)$	$0.0100(6)$	$0.0045(6)$
C7	$0.0377(10)$	$0.0498(11)$	$0.0306(9)$	$0.0040(9)$	$0.0033(7)$	$-0.0026(8)$
O4	$0.0554(9)$	$0.0584(9)$	$0.0326(7)$	$0.0197(7)$	$0.0006(6)$	$-0.0061(6)$
O5	$0.0578(9)$	$0.0801(11)$	$0.0278(7)$	$0.0220(8)$	$0.0059(6)$	$-0.0007(6)$
C8A	$0.052(3)$	$0.043(3)$	$0.0314(14)$	$-0.0076(18)$	$0.0046(15)$	$-0.0078(17)$
C9A	$0.040(4)$	$0.037(4)$	$0.025(3)$	$-0.001(3)$	$-0.001(3)$	$-0.001(2)$
C10A	$0.051(4)$	$0.056(4)$	$0.047(4)$	$-0.019(4)$	$0.013(3)$	$-0.006(3)$

sup-4

supplementary materials

C11A	$0.052(3)$	$0.043(3)$	$0.0314(14)$	$-0.0076(18)$	$0.0046(15)$	$-0.0078(17)$
C12A	$0.037(4)$	$0.041(4)$	$0.032(4)$	$0.002(3)$	$-0.002(3)$	$0.004(3)$
C13A	$0.061(4)$	$0.039(3)$	$0.032(3)$	$-0.024(3)$	$0.013(3)$	$-0.004(2)$
C8B	$0.052(3)$	$0.043(3)$	$0.0314(14)$	$-0.0076(18)$	$0.0046(15)$	$-0.0078(17)$
C9B	$0.040(4)$	$0.037(4)$	$0.025(3)$	$-0.001(3)$	$-0.001(3)$	$-0.001(2)$
C10B	$0.051(4)$	$0.056(4)$	$0.047(4)$	$-0.019(4)$	$0.013(3)$	$-0.006(3)$
C11B	$0.052(3)$	$0.043(3)$	$0.0314(14)$	$-0.0076(18)$	$0.0046(15)$	$-0.0078(17)$
C12B	$0.037(4)$	$0.041(4)$	$0.032(4)$	$0.002(3)$	$-0.002(3)$	$0.004(3)$
C13B	$0.061(4)$	$0.039(3)$	$0.032(3)$	$-0.024(3)$	$0.013(3)$	$-0.004(2)$

Geometric parameters ($A,{ }^{\circ}$)

N1-O1	1.208 (2)
N1-O2	1.220 (2)
N1-C1	1.461 (2)
C1-C2	1.379 (3)
C1-C6	1.387 (3)
C2-C3	1.378 (3)
C2-H2	0.9500
C3-C4	1.374 (3)
C3-H3	0.9500
C4-C5	1.379 (3)
C4-O3	1.403 (2)
C5-C6	1.381 (3)
C5-H5	0.9500
C6-H6	0.9500
O3-C7	1.336 (2)
C7-O4	1.187 (2)
C7-O5	1.327 (2)
O5-C8B	1.491 (10)
O5-C118 ${ }^{\text {i }}$	1.491 (10)
O5-C11A ${ }^{\text {i }}$	1.500 (10)
O5-C8A	1.515 (9)
C8A-C9A	1.513 (10)
C8A-C13A	1.543 (9)
C8A-H8A	1.0000
C9A-C10A	1.527 (10)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 2$	122.74 (16)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{Cl}$	118.76 (16)
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1$	118.49 (16)
C2-C1-C6	122.64 (17)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	118.54 (16)
C6-C1-N1	118.82 (16)
C3-C2-C1	118.65 (18)
C3-C2-H2	120.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.7
C4-C3-C2	119.16 (18)

C9A-H9A	0.9900
C10A-C11A	1.516 (10)
C10A-H10A	0.9900
C10A-H10B	0.9900
C11A-O5 ${ }^{\text {i }}$	1.500 (10)
C11A-C12A	1.511 (10)
C11A-H11A	1.0000
C12A-C13A	1.387 (11)
C12A-H12A	0.9500
C13A-H13A	0.9500
C8B-C9B	1.502 (11)
C8B-C13B	1.513 (10)
C8B-H8B	1.0000
C9B-C10B	1.517 (11)
C9B-H9C	0.9900
C9B-H9D	0.9900
C10B-C11B	1.519 (11)
C10B-H10C	0.9900
C10B-H10D	0.9900
C11B-C12B	1.489 (11)
C11B-O5 ${ }^{\text {i }}$	1.491 (10)
C11B-H11B	1.0000
C12B-C13B	1.397 (13)
C12B-H12B	0.9500
C13B-H13B	0.9500
$\mathrm{O} 5-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$	108.3 (7)
O5 ${ }^{\text {i }}$ - $\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	100.1 (7)
C12A-C11A-C10A	115.6 (9)
O5 ${ }^{\text {i }}$ - $\mathrm{C} 11 \mathrm{~A}-\mathrm{H} 11 \mathrm{~A}$	110.8
C12A-C11A-H11A	110.8
C10A-C11A-H11A	110.8
C13A-C12A-C11A	118.0 (9)
C13A-C12A-H12A	121.0
C11A-C12A-H12A	121.0
C12A-C13A-C8A	122.2 (9)

supplementary materials

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$122.15(17)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	$117.26(18)$
C5-C4-O3	$120.50(19)$
C4-C5-C6	$119.38(18)$
C4-C5-H5	120.3
C6-C5-H5	120.3
C5-C6-C1	$118.01(18)$
C5-C6-H6	121.0
C1-C6-H6	121.0
C7-O3-C4	$116.99(14)$
O4-C7-O5	$128.71(18)$
O4-C7-O3	$125.86(17)$
O5-C7-O3	$105.43(16)$
C7-O5-C8B	$115.5(5)$
C7-O5-C8A	$111.3(5)$
C9A-C8A-O5	$104.0(8)$
C9A-C8A-C13A	$110.5(8)$
O5-C8A-C13A	$114.2(7)$
C9A-C8A-H8A	109.3
O5-C8A-H8A	109.3
C13A-C8A-H8A	109.3
C8A-C9A-C10A	$110.5(8)$
C8A-C9A-H9A	109.5
C10A-C9A-H9A	109.5
C11A-C10A-C9A	$103.0(8)$
C11A-C10A-H10A	111.2
C9A-C10A-H10A	111.2
C11A-C10A-H10B	111.2
C9A-C10A-H10B	111.2
H10A-C10A-H10B	109.1
C5-C10	

Symmetry codes: (i) $-x+1,-y+1,-z+1$.

Fig. 1

supplementary materials

Fig. 2

