Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# *trans*-Cyclohex-2-ene-1,4-diyl bis(4-nitrophenyl) dicarbonate

## Syed Nawazish Ali,<sup>a,b</sup> Sabira Begum,<sup>a</sup> Mitchell A. Winnik<sup>b</sup> and Alan J. Lough<sup>b</sup>\*

<sup>a</sup>H. E. J. Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi 75270, Pakistan, and <sup>b</sup>Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada Correspondence e-mail: alough@chem.utoronto.ca

Received 3 December 2007; accepted 6 December 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.055; wR factor = 0.167; data-to-parameter ratio = 12.0.

Although the title molecule,  $C_{20}H_{16}N_2O_{10}$ , does not possess molecular inversion symmetry, it lies on a crystallographic inversion centre which imposes disorder on the central cyclohexene ring. In addition, the cyclohexene ring has nonsymmetry-related disorder over two sites, with the ratio of the major and minor components being 0.54:0.46. The overall effect is to produce four disorder components for the atoms of the cyclohexene ring. The side chain is perfectly ordered and the dihedral angle between the atoms of the carbonate group (O=CO<sub>2</sub>-) and the benzene ring is 72.99 (6)°.

#### **Related literature**

For related literature, see: Ali *et al.* (2008); Ericsson & Hult (1991); Fréchet *et al.* (1986, 1987).



#### **Experimental**

Crystal data  $C_{20}H_{16}N_2O_{10}$  $M_r = 444.35$ 

Monoclinic,  $P2_1/n$ a = 5.6874 (4) Å b = 13.4958 (10) Å c = 12.7017 (5) Å  $\beta = 96.453 (4)^{\circ}$   $V = 968.76 (11) \text{ Å}^{3}$ Z = 2

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995)  $T_{min} = 0.560, T_{max} = 0.987$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$  $wR(F^2) = 0.167$ S = 1.052222 reflections 185 parameters Mo K $\alpha$  radiation  $\mu = 0.13 \text{ mm}^{-1}$  T = 150 (1) K $0.40 \times 0.18 \times 0.12 \text{ mm}$ 

9286 measured reflections 2222 independent reflections 1408 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.068$ 

58 restraints H-atom parameters constrained  $\Delta \rho_{max} = 0.24$  e Å<sup>-3</sup>  $\Delta \rho_{min} = -0.35$  e Å<sup>-3</sup>

Data collection: *COLLECT* (Nonius, 2002); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXTL/PC* (Sheldrick, 2001); molecular graphics: *PLATON* (Spek, 2003) ; software used to prepare material for publication: *SHELXTL/PC*.

The authors acknowledge funding from the Higher Education Commission (HEC) of Pakistan, Materials and Manufacturing Ontario (MMO), Canada, NSERC Canada and the University of Toronto.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2674).

#### References

- Ali, S. N., Ghafouri, S., Yin, Z., Froimowicz, P., Begum, S. & Winnik, M. A. (2008). In preparation.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Ericsson, J. & Hult, A. (1991). Makromol. Chem. 192, 1609-1619.
- Fréchet, J. M. J., Bouchard, F., Eichler, E., Houlihan, F. M., Ilzawa, T., Kryczka, B. & Willson, C. G. (1987). Polym. J. 19, 31–49.
- Fréchet, J. M. J., Bouchard, F., Houlihan, F. M., Eichler, E., Ktyczka, B. & Willson, C. G. (1986). Macromol. Chem. Rapid Commun. 7, 121–126.
- Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,
- Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2008). E64, o281 [doi:10.1107/S1600536807065993]

#### trans-Cyclohex-2-ene-1,4-diyl bis(4-nitrophenyl) dicarbonate

#### S. Nawazish Ali, S. Begum, M. A. Winnik and A. J. Lough

#### Comment

The title compound, (I), was synthesized two decades ago (Fréchet *et al.*, 1986) as a mixture of *cis* and *trans* isomers starting with a *cis* and *trans* mixture of cyclohex-2-ene-1,4-diol to obtain electrophilic character of diols. This compound has been used to obtain a wide variety of thermally and acid labile polymers for a variety of applications (Fréchet *et al.*, 1987; Ericsson & Hult, 1991). We have used the *trans* isomer of this alcohol for the synthesis of a number of homo and copolycarbonates (Ali *et al.*, 2008).

We report here the crystal structure of (I). Figures 1 and 2 show the two non-symmetry related components of disorder for the cyclohexene ring in (I). The crystallograhic inversion related disorder is not shown.

#### Experimental

A solution of 4-nitrophenylchloroformate (1.41 g, 7.0 mmol) in dry dichloromethane (20 ml) was added dropwise *via* a 100 ml separating funnel into a solution of cyclohex-2-ene-1,4-diol (*trans* isomer) (0.40 g, 3.5 mmol) in anhydrous pyridine (0.49 g, 0.5 ml, 6.2 mmol) and dry dichloromethane (10 ml) in a 100 ml round-bottom flask. A white suspension appeared which was allowed to stir gently at room temperature for 12 h. After this time more dry dichloromethane (25 ml) was added, which dissolved the suspension and then the reaction mixture was stirred for another 6 h. Then it was quenched by adding deionized water (30 ml). The reaction mixture was transferred to a separating funnel (250 ml), and the lower organic phase was removed. The aqueous phase was washed with dichloromethane (20 ml  $\times$  2), and all the dichloromethane solutions were combined. These were then washed with deionized water (20 ml  $\times$  2), a 1.0% solution of acetic acid (30 ml  $\times$  2) and once more with deionized water (25 ml  $\times$  2), and then dried over anhydrous magnesium sulfate and filtered. After filtration, the solvent was removed by rotary evaporation. The product was dried in air overnight in a fume hood and then in a vacuum oven for 24 h at room temperature (< 1 Torr). The desired product was obtained in good yield (1.35 g, 86.5%) as a white crystalline solid. The product was recrystallized in dichloromethane and colourless needles of (I) were obtained by slow evaporation of solvent at room temperature. In addition to the X-ray structure determination, the structure of the crystalline sample was confirmed by Mass and NMR (<sup>1</sup>H and <sup>13</sup>C)Spectroscopy.

#### Refinement

All the hydrogen atoms were placed in calculated positions with C-H = 0.95 - 1.00 Å and refined as riding with  $U_{iso}(H) = 1.2U_{eq}(C)$ . The components of the two symmetry independent disorder sites refined to 0.2680 (13) and 0.2320 (13). The disorder was modelled by creating two full rings for each component and by using suitable constraints and restraints to give each ring component similar geometries.

**Figures** 



Fig. 1. The molecular structure of (I) showing one component of disorder in the cyclohexene ring. Displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related by the symmetry operator (1 - x, 1 - y, 1 - z).



Fig. 2. The molecular structure of (I) showing another component of disorder in the cyclohexene ring. Displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related by the symmetry operator (1 - x, 1 - y, 1 - z).

#### trans-Cyclohex-2-ene-1,4-diyl bis(4-nitrophenyl) dicarbonate

Crystal data

| $C_{20}H_{16}N_2O_{10}$        | $F_{000} = 460$                                 |
|--------------------------------|-------------------------------------------------|
| $M_r = 444.35$                 | $D_{\rm x} = 1.523 {\rm ~Mg~m}^{-3}$            |
| Monoclinic, $P2_1/n$           | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn            | Cell parameters from 9286 reflections           |
| a = 5.6874 (4) Å               | $\theta = 3-27.5^{\circ}$                       |
| <i>b</i> = 13.4958 (10) Å      | $\mu = 0.13 \text{ mm}^{-1}$                    |
| c = 12.7017 (5)  Å             | T = 150 (1)  K                                  |
| $\beta = 96.453 \ (4)^{\circ}$ | Needle, colourless                              |
| $V = 968.76 (11) \text{ Å}^3$  | $0.40 \times 0.18 \times 0.12 \text{ mm}$       |
| <i>Z</i> = 2                   |                                                 |

#### Data collection

| Nonius KappaCCD<br>diffractometer                             | 2222 independent reflections           |
|---------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                      | 1408 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                       | $R_{\rm int} = 0.068$                  |
| Detector resolution: 9 pixels mm <sup>-1</sup>                | $\theta_{\text{max}} = 27.5^{\circ}$   |
| T = 150(2)  K                                                 | $\theta_{\min} = 3.0^{\circ}$          |
| $\phi$ scans and $\omega$ scans with $\kappa$ offsets         | $h = -7 \rightarrow 7$                 |
| Absorption correction: multi-scan<br>(SORTAV; Blessing, 1995) | $k = -17 \rightarrow 17$               |
| $T_{\min} = 0.560, \ T_{\max} = 0.987$                        | $l = -16 \rightarrow 16$               |
| 9286 measured reflections                                     |                                        |

Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.055$                                | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.167$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0883P)^2 + 0.1379P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.05                                                | $(\Delta/\sigma)_{\text{max}} = 0.001$                                              |
| 2222 reflections                                               | $\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$                               |
| 185 parameters                                                 | $\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$                              |
| 58 restraints                                                  | Extinction correction: none                                                         |
| Primary atom site location: structure-invariant direct methods |                                                                                     |
|                                                                |                                                                                     |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|    | x           | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ | Occ. (<1) |
|----|-------------|--------------|--------------|---------------------------|-----------|
| N1 | 0.1105 (3)  | 0.66892 (13) | 1.23307 (12) | 0.0413 (4)                |           |
| 01 | 0.2311 (3)  | 0.72664 (14) | 1.28816 (11) | 0.0724 (5)                |           |
| O2 | -0.0346 (3) | 0.61480 (13) | 1.26762 (11) | 0.0677 (5)                |           |
| C1 | 0.1364 (3)  | 0.66467 (13) | 1.12001 (13) | 0.0337 (4)                |           |
| C2 | -0.0422 (3) | 0.62192 (14) | 1.05264 (14) | 0.0382 (4)                |           |
| H2 | -0.1786     | 0.5955       | 1.0793       | 0.046*                    |           |
| C3 | -0.0189 (4) | 0.61836 (14) | 0.94586 (14) | 0.0422 (5)                |           |
| Н3 | -0.1399     | 0.5899       | 0.8976       | 0.051*                    |           |
| C4 | 0.1818 (4)  | 0.65644 (15) | 0.91015 (14) | 0.0431 (5)                |           |
| C5 | 0.3600 (3)  | 0.69951 (16) | 0.97755 (15) | 0.0455 (5)                |           |
| H5 | 0.4966      | 0.7254       | 0.9506       | 0.055*                    |           |
| C6 | 0.3380 (3)  | 0.70468 (15) | 1.08455 (14) | 0.0406 (5)                |           |
| H6 | 0.4573      | 0.7347       | 1.1325       | 0.049*                    |           |
| O3 | 0.1941 (3)  | 0.65488 (13) | 0.80041 (10) | 0.0582 (4)                |           |
| C7 | 0.3396 (3)  | 0.58846 (15) | 0.76418 (14) | 0.0394 (5)                |           |
| O4 | 0.4698 (2)  | 0.53485 (11) | 0.81690 (10) | 0.0491 (4)                |           |
| O5 | 0.3066 (3)  | 0.59665 (13) | 0.65942 (10) | 0.0551 (4)                |           |

| C8A  | 0.4218 (17) | 0.5118 (9)  | 0.6065 (8) | 0.0423 (9)  | 0.2680 (13) |
|------|-------------|-------------|------------|-------------|-------------|
| H8A  | 0.4651      | 0.4583      | 0.6597     | 0.051*      | 0.2680 (13) |
| C9A  | 0.6450 (17) | 0.5568 (7)  | 0.5726 (7) | 0.0341 (18) | 0.2680 (13) |
| H9A  | 0.7567      | 0.5721      | 0.6360     | 0.041*      | 0.2680 (13) |
| H9B  | 0.6059      | 0.6195      | 0.5341     | 0.041*      | 0.2680 (13) |
| C10A | 0.7618 (16) | 0.4853 (7)  | 0.5010 (6) | 0.0509 (19) | 0.2680 (13) |
| H10A | 0.9225      | 0.5081      | 0.4897     | 0.061*      | 0.2680 (13) |
| H10B | 0.7721      | 0.4177      | 0.5314     | 0.061*      | 0.2680 (13) |
| C11A | 0.5965 (18) | 0.4882 (9)  | 0.3987 (9) | 0.0423 (9)  | 0.2680 (13) |
| H11A | 0.6139      | 0.5519      | 0.3603     | 0.051*      | 0.2680 (13) |
| C12A | 0.3392 (18) | 0.4672 (7)  | 0.4093 (7) | 0.037 (2)   | 0.2680 (13) |
| H12A | 0.2298      | 0.4543      | 0.3487     | 0.045*      | 0.2680 (13) |
| C13A | 0.2677 (17) | 0.4674 (6)  | 0.5102 (5) | 0.0435 (17) | 0.2680 (13) |
| H13A | 0.1188      | 0.4392      | 0.5203     | 0.052*      | 0.2680 (13) |
| C8B  | 0.496 (2)   | 0.5532 (8)  | 0.6018 (9) | 0.0423 (9)  | 0.2320 (13) |
| H8B  | 0.6551      | 0.5605      | 0.6438     | 0.051*      | 0.2320 (13) |
| C9B  | 0.4298 (19) | 0.4460 (8)  | 0.5879 (8) | 0.0341 (18) | 0.2320 (13) |
| Н9С  | 0.2613      | 0.4410      | 0.5587     | 0.041*      | 0.2320 (13) |
| H9D  | 0.4489      | 0.4127      | 0.6578     | 0.041*      | 0.2320 (13) |
| C10B | 0.5814 (19) | 0.3938 (10) | 0.5141 (8) | 0.0509 (19) | 0.2320 (13) |
| H10C | 0.5527      | 0.3214      | 0.5139     | 0.061*      | 0.2320 (13) |
| H10D | 0.7515      | 0.4062      | 0.5359     | 0.061*      | 0.2320 (13) |
| C11B | 0.506 (2)   | 0.4379 (8)  | 0.4055 (9) | 0.0423 (9)  | 0.2320 (13) |
| H11B | 0.3474      | 0.4124      | 0.3759     | 0.051*      | 0.2320 (13) |
| C12B | 0.5147 (19) | 0.5479 (9)  | 0.3997 (9) | 0.037 (2)   | 0.2320 (13) |
| H12B | 0.5330      | 0.5814      | 0.3353     | 0.045*      | 0.2320 (13) |
| C13B | 0.4943 (19) | 0.5999 (9)  | 0.4934 (7) | 0.0435 (17) | 0.2320 (13) |
| H13B | 0.4777      | 0.6698      | 0.4887     | 0.052*      | 0.2320 (13) |

### Atomic displacement parameters $(\text{\AA}^2)$

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|------|-------------|-------------|-------------|--------------|-------------|--------------|
| N1   | 0.0430 (9)  | 0.0476 (10) | 0.0351 (8)  | -0.0026 (8)  | 0.0119 (7)  | -0.0027 (7)  |
| 01   | 0.0743 (11) | 0.1030 (14) | 0.0427 (8)  | -0.0408 (10) | 0.0191 (7)  | -0.0301 (8)  |
| O2   | 0.0728 (11) | 0.0881 (13) | 0.0447 (9)  | -0.0339 (10) | 0.0181 (7)  | 0.0035 (8)   |
| C1   | 0.0384 (10) | 0.0327 (9)  | 0.0311 (9)  | 0.0052 (8)   | 0.0090 (7)  | -0.0006(7)   |
| C2   | 0.0388 (10) | 0.0342 (10) | 0.0420 (10) | 0.0021 (8)   | 0.0060 (8)  | 0.0018 (8)   |
| C3   | 0.0487 (11) | 0.0407 (11) | 0.0357 (10) | 0.0075 (9)   | -0.0021 (8) | -0.0036 (8)  |
| C4   | 0.0485 (11) | 0.0510 (12) | 0.0305 (9)  | 0.0232 (9)   | 0.0071 (8)  | 0.0028 (8)   |
| C5   | 0.0383 (11) | 0.0579 (13) | 0.0431 (10) | 0.0087 (9)   | 0.0164 (8)  | 0.0066 (9)   |
| C6   | 0.0382 (10) | 0.0470 (11) | 0.0375 (10) | 0.0010 (8)   | 0.0080 (7)  | -0.0016 (8)  |
| O3   | 0.0684 (10) | 0.0769 (11) | 0.0302 (7)  | 0.0395 (8)   | 0.0100 (6)  | 0.0045 (6)   |
| C7   | 0.0377 (10) | 0.0498 (11) | 0.0306 (9)  | 0.0040 (9)   | 0.0033 (7)  | -0.0026 (8)  |
| O4   | 0.0554 (9)  | 0.0584 (9)  | 0.0326 (7)  | 0.0197 (7)   | 0.0006 (6)  | -0.0061 (6)  |
| O5   | 0.0578 (9)  | 0.0801 (11) | 0.0278 (7)  | 0.0220 (8)   | 0.0059 (6)  | -0.0007 (6)  |
| C8A  | 0.052 (3)   | 0.043 (3)   | 0.0314 (14) | -0.0076 (18) | 0.0046 (15) | -0.0078 (17) |
| C9A  | 0.040 (4)   | 0.037 (4)   | 0.025 (3)   | -0.001 (3)   | -0.001 (3)  | -0.001 (2)   |
| C10A | 0.051 (4)   | 0.056 (4)   | 0.047 (4)   | -0.019 (4)   | 0.013 (3)   | -0.006 (3)   |

| C11A                 | 0.052 (3)     | 0.043 (3)   | 0.0314 (14       | )                   | -0.0076 (18)    | 0.0046 (15) | -0.0078 (17) |  |
|----------------------|---------------|-------------|------------------|---------------------|-----------------|-------------|--------------|--|
| C12A                 | 0.037 (4)     | 0.041 (4)   | 0.032 (4)        |                     | 0.002 (3)       | -0.002 (3)  | 0.004 (3)    |  |
| C13A                 | 0.061 (4)     | 0.039 (3)   | 0.032 (3)        |                     | -0.024 (3)      | 0.013 (3)   | -0.004 (2)   |  |
| C8B                  | 0.052 (3)     | 0.043 (3)   | 0.0314 (14       | )                   | -0.0076 (18)    | 0.0046 (15) | -0.0078 (17) |  |
| C9B                  | 0.040 (4)     | 0.037 (4)   | 0.025 (3)        |                     | -0.001 (3)      | -0.001 (3)  | -0.001 (2)   |  |
| C10B                 | 0.051 (4)     | 0.056 (4)   | 0.047 (4)        |                     | -0.019 (4)      | 0.013 (3)   | -0.006 (3)   |  |
| C11B                 | 0.052 (3)     | 0.043 (3)   | 0.0314 (14       | )                   | -0.0076 (18)    | 0.0046 (15) | -0.0078 (17) |  |
| C12B                 | 0.037 (4)     | 0.041 (4)   | 0.032 (4)        |                     | 0.002 (3)       | -0.002 (3)  | 0.004 (3)    |  |
| C13B                 | 0.061 (4)     | 0.039 (3)   | 0.032 (3)        |                     | -0.024 (3)      | 0.013 (3)   | -0.004 (2)   |  |
| Geometric paran      | neters (Å, °) |             |                  |                     |                 |             |              |  |
| N1—01                |               | 1.208 (2)   | C                | 29А—Н               | 9A              | 0.99        | 00           |  |
| N1—O2                |               | 1.220 (2)   | C                | C10A—C              | C11A            | 1.51        | 5 (10)       |  |
| N1—C1                |               | 1.461 (2)   | C                | C10A—H              | H10A            | 0.99        | 00           |  |
| C1—C2                |               | 1.379 (3)   | C                | C10A—H              | H10B            | 0.99        | 00           |  |
| C1—C6                |               | 1.387 (3)   | C                | C11A—0              | )5 <sup>i</sup> | 1.50        | 0 (10)       |  |
| С2—С3                |               | 1.378 (3)   | C                | C11A—C              | C12A            | 1.511 (10)  |              |  |
| С2—Н2                |               | 0.9500      | C                | C11A—F              | H11A            | 1.0000      |              |  |
| C3—C4                |               | 1.374 (3)   | C                | C12A—C              | C13A            | 1.387 (11)  |              |  |
| С3—Н3                |               | 0.9500      | C                | C12A—F              | H12A            | 0.9500      |              |  |
| C4—C5                |               | 1.379 (3)   | C                | C13A—H13A           |                 | 0.9500      |              |  |
| C4—O3                |               | 1.403 (2)   | C                | С8В—С9В 1.5         |                 | 1.502       | 1.502 (11)   |  |
| C5—C6                |               | 1.381 (3)   | C                | C8B—C               | 13B             | 1.513 (10)  |              |  |
| С5—Н5                |               | 0.9500      | C                | 28В—Н               | 8B              | 1.0000      |              |  |
| С6—Н6                |               | 0.9500      | C                | C9B—C               | 10B             | 1.51        | 7 (11)       |  |
| O3—C7                |               | 1.336 (2)   | C                | 29B—Н9              | 9C              | 0.99        | 00           |  |
| С7—О4                |               | 1.187 (2)   | C                | 29B—H9              | 9D              | 0.99        | 00           |  |
| С7—О5                |               | 1.327 (2)   | C10B—C11B        |                     | 1.51            | 9 (11)      |              |  |
| O5—C8B               |               | 1.491 (10)  | C10B—H10C 0.9900 |                     | 00              |             |              |  |
| O5—C11B <sup>i</sup> |               | 1.491 (10)  | C                | C10B—H10D 0.9900    |                 | 00          |              |  |
| O5—C11A <sup>i</sup> |               | 1.500 (10)  | C                | C11B—C              | C12B            | 1.48        | 9 (11)       |  |
| O5—C8A               |               | 1.515 (9)   | C                | C11B—C              | )5 <sup>i</sup> | 1.49        | 1 (10)       |  |
| C8A—C9A              |               | 1.513 (10)  | C                | C11B—F              | H11B            | 1.00        | 00           |  |
| C8A—C13A             |               | 1.543 (9)   | C                | C12B—C              | C13B            | 1.39        | 7 (13)       |  |
| C8A—H8A              |               | 1.0000      | C                | C12B—H              | H12B            | 0.95        | 00           |  |
| C9A-C10A             |               | 1.527 (10)  | C                | C13B—F              | H13B            | 0.95        | 00           |  |
| O1—N1—O2             |               | 122.74 (16) | С                | 05 <sup>i</sup> —C1 | 1A—C12A         | 108.        | 3 (7)        |  |
| 01—N1—C1             |               | 118.76 (16) | С                | 05 <sup>i</sup> —C1 | 1A—C10A         | 100.        | 1 (7)        |  |
| O2—N1—C1             |               | 118.49 (16) | C                | C12A—C              | C11A—C10A       | 115.0       | 5 (9)        |  |
| C2-C1-C6             |               | 122.64 (17) | C                | 05 <sup>i</sup> —C1 | 1A—H11A         | 110.8       | 3            |  |
| C2-C1-N1             |               | 118.54 (16) | C                | C12A—C              | C11A—H11A       | 110.8       | 3            |  |
| C6—C1—N1             |               | 118.82 (16) | C                | C10A—C              | C11A—H11A       | 110.8       | 3            |  |
| C3—C2—C1             |               | 118.65 (18) | C                | C13A—C              | C12A—C11A       | 118.0       | ) (9)        |  |
| С3—С2—Н2             |               | 120.7       | C                | C13A—C              | C12A—H12A       | 121.0       | )            |  |
| С1—С2—Н2             |               | 120.7       | C                | C11A—C              | C12A—H12A       | 121.0       | )            |  |
| C4—C3—C2             |               | 119.16 (18) | C                | C12A—C              | C13A—C8A        | 122.3       | 2 (9)        |  |

| С4—С3—Н3                                 | 120.4       | C12A—C13A—H13A             | 118.9      |
|------------------------------------------|-------------|----------------------------|------------|
| С2—С3—Н3                                 | 120.4       | C8A—C13A—H13A              | 118.9      |
| C3—C4—C5                                 | 122.15 (17) | O5—C8B—C9B                 | 104.4 (9)  |
| C3—C4—O3                                 | 117.26 (18) | O5-C8B-C13B                | 110.5 (8)  |
| C5—C4—O3                                 | 120.50 (19) | C9B—C8B—C13B               | 108.5 (10) |
| C4—C5—C6                                 | 119.38 (18) | O5—C8B—H8B                 | 111.0      |
| С4—С5—Н5                                 | 120.3       | C9B—C8B—H8B                | 111.0      |
| С6—С5—Н5                                 | 120.3       | C13B—C8B—H8B               | 111.0      |
| C5—C6—C1                                 | 118.01 (18) | C8B—C9B—C10B               | 111.5 (9)  |
| С5—С6—Н6                                 | 121.0       | С8В—С9В—Н9С                | 109.3      |
| С1—С6—Н6                                 | 121.0       | C10B—C9B—H9C               | 109.3      |
| C7—O3—C4                                 | 116.99 (14) | C8B—C9B—H9D                | 109.3      |
| O4—C7—O5                                 | 128.71 (18) | C10B—C9B—H9D               | 109.3      |
| O4—C7—O3                                 | 125.86 (17) | H9C—C9B—H9D                | 108.0      |
| O5—C7—O3                                 | 105.43 (16) | C9B-C10B-C11B              | 105.0 (9)  |
| C7—O5—C8B                                | 115.5 (5)   | C9B—C10B—H10C              | 110.7      |
| C7—O5—C8A                                | 111.3 (5)   | C11B—C10B—H10C             | 110.7      |
| C9A—C8A—O5                               | 104.0 (8)   | C9B—C10B—H10D              | 110.7      |
| C9A—C8A—C13A                             | 110.5 (8)   | C11B-C10B-H10D             | 110.7      |
| O5—C8A—C13A                              | 114.2 (7)   | H10C-C10B-H10D             | 108.8      |
| С9А—С8А—Н8А                              | 109.3       | C12B—C11B—O5 <sup>i</sup>  | 104.8 (8)  |
| O5—C8A—H8A                               | 109.3       | C12B—C11B—C10B             | 115.4 (11) |
| С13А—С8А—Н8А                             | 109.3       | O5 <sup>i</sup> —C11B—C10B | 103.6 (8)  |
| C8A—C9A—C10A                             | 110.5 (8)   | C12B—C11B—H11B             | 110.9      |
| С8А—С9А—Н9А                              | 109.5       | O5 <sup>i</sup> —C11B—H11B | 110.9      |
| С10А—С9А—Н9А                             | 109.5       | C10B—C11B—H11B             | 110.9      |
| C11A—C10A—C9A                            | 103.0 (8)   | C13B—C12B—C11B             | 116.9 (11) |
| C11A—C10A—H10A                           | 111.2       | C13B—C12B—H12B             | 121.6      |
| C9A—C10A—H10A                            | 111.2       | C11B—C12B—H12B             | 121.6      |
| C11A—C10A—H10B                           | 111.2       | C12B—C13B—C8B              | 125.0 (11) |
| C9A—C10A—H10B                            | 111.2       | C12B—C13B—H13B             | 117.5      |
| H10A—C10A—H10B                           | 109.1       | C8B—C13B—H13B              | 117.5      |
| Symmetry codes: (i) $-x+1, -y+1, -z+1$ . |             |                            |            |



